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Sound transmission through straight circular ducts with a uniform inviscid mean
flow and a constant acoustic lining (impedance wall) is classically described by a
modal expansion. A natural extension for ducts with axially slowly varying properties
(diameter and mean flow, wall impedance) is a multiple-scales solution. It is shown
in the present paper that a consistent approximation of boundary condition and
isentropic mean flow allows the multiple-scales problem to have an exact solution.
Since the calculational complexities are no greater than for the classical straight
duct model, the present solution provides an attractive alternative to a full numerical
solution if diameter variation is relevant. A unique feature of the present solution
is that it provides a systematic approximation to the hollow-to-annular cylinder
transition problem in the turbofan engine inlet duct.

1. Introduction
The theory of sound propagation in straight ducts with constant impedance type

boundary conditions and a homogeneous stationary medium is classical and well-
established (Morse & Ingard 1968; Pierce 1981). At frequency ω, the sound field,
satisfying the Helmholtz equation (∇2 +k2)φ = 0, may be built up by superposition of
eigensolutions or modes. These are certain shape-preserving fundamental solutions.
The existence of these modes is a consequence of the relatively simple geometry,
allowing separation of variables.

For cylindrical ducts, with associated cylindrical coordinate system (x, r, θ) the
modes are given, in the usual complex notation, by exponentials and Bessel functions:
NJm(αr)eiωt−imθ−ikx for a simple cylinder, and [NJm(αr) + MYm(αr)]eiωt−imθ−ikx for an
annular cylinder.

The eigenvalue m, or circumferential wavenumber, is, due to the periodicity in θ,
an integer; the eigenvalue α, or radial wavenumber, is determined by the appropriate
boundary condition at the duct wall(s), while the axial wavenumber k is related to α
and ω via a dispersion relation. If we introduce a mean flow in the duct (motivated by
aircraft turbofan engine applications, Nayfeh, Kaiser & Telionis 1975a, figure 1), the
acoustic problem becomes rapidly much more difficult. Spatially varying mean flow
velocities produce non-constant coefficients of the acoustic equations, which usually
spoils the possibility of a modal expansion. Perhaps the simplest non-trivial mean
flow is a uniform flow, in the limit of vanishing viscosity. Then modal solutions are
possible, of a form rather similar to the one without flow.

A most important problem here is the way the sound field is transmitted through
the vanishing mean flow boundary layer at the wall, which thus effectively modifies
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Figure 1. A turbofan engine.

the impedance boundary condition at the duct wall into an equivalent boundary
condition in the limit to the duct wall. This modified boundary condition was first
proposed by Ingard (1959) and later proved by Eversman & Beckemeyer (1972) and
Tester (1973a) to be indeed the correct limit for a boundary layer which is much
smaller than a typical acoustic wavelength.

In certain applications the geometry of a cylindrical duct is only an approximate
model, and it is therefore of practical interest to consider sound transmission through
ducts of varying cross-section. In general, this problem is, again, very difficult, and
one usually resorts to numerical methods. However, quite often, especially when the
duct carries a mean flow, the diameter variations of the duct are only gradual, thus
introducing prospects of perturbation solutions. Indeed, several authors have utilized
the small parameter related to the slow cross-section variations (Eisenberg & Kao
1971; Tam 1971; Huerre & Karamcheti 1973; Thompson & Sen 1984). A particularly
interesting and systematic approach is the method of multiple scales elaborated by
Nayfeh and co-workers, for both ducts without (Nayfeh & Telionis 1973) and with
flow (Nayfeh, Telionis & Lekoudis 1975; Nayfeh, Kaiser & Telionis 1975b), and with
hard and impedance walls. The multiple-scales technique provides a very natural
generalization of modal solutions since a mode of a constant duct is now assumed
to vary its shape according to the duct variations, in a way that amplitude and
wavenumbers are slowly varying functions, rather than constants.

In Rienstra (1988) we proceeded along these lines, and presented an explicit
multiple-scales solution of a problem similar to the one considered previously by
Nayfeh et al. We considered a mode propagating in a slowly varying duct with
impedance walls and containing almost uniform (inviscid, isentropic, irrotational)
mean flow with vanishing boundary layer.

A somewhat puzzling aspect of Nayfeh et al.’s solutions was that without flow the
differential equation for the slowly varying amplitude could be solved exactly, whereas
with flow this was not the case. Also, in Rienstra (1985) the amplitude equation for a
similar problem of a duct with (slowly varying) porous walls could be solved exactly.
In Rienstra (1988) we showed that, at least in the present type of problem, an exact
solution appears to be the rule rather than an exception, if the entire perturbation
analysis is consistent at all levels. In the problem under consideration, Nayfeh et al.
used an ad hoc mean flow velocity profile (quasi-one-dimensional with some assumed
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boundary layer) which is not a solution of the mean flow equations, and, furthermore,
in the case of a vanishing boundary layer they used an incorrect effective boundary
condition, although at that time this was not known. Myers (1980) showed that
Ingard’s (1959) effective boundary condition for an impedance wall with uniform
mean flow is to be modified significantly in the case of non-uniform mean flow along
curved surfaces.

Both Myers’ (1980) boundary condition and a consistent approximation of the
mean flow is essential for the explicit solution presented.

In the present study we continue along these lines, and extend the theory to include
an annular cylindrical geometry, in particular the transition from hollow to annular
cylinder, and include some illustrative examples. These examples are taken from
turbofan engine applications.

2. Formulation of the problem
We consider a cylindrical duct with slowly varying cross-section. Inside this duct

we have a compressible inviscid perfect isentropic irrotational gas flow, consisting of
a mean flow and acoustic perturbations. To the mean flow the duct is hard-walled,
but for the acoustic field the duct is lined with an impedance wall.

It is convenient to make parameters dimensionless: spatial dimensions on a typical
duct radius R∞, densities on a reference value ρ∞, velocities on a reference sound
speed c∞, time on R∞/c∞, pressure on ρ∞c2∞, and velocity potential on R∞c∞. Note
that the corresponding reference pressure p∞ satisfies ρ∞c2∞ = γp∞, where γ is the
(constant) ratio of specific heats at constant pressure and volume.

We then have in the cylindrical coordinates (x, r, θ), with unit vectors ex, er and eθ ,
the duct inner wall radius R1 and outer wall radius R2 given by

r = R1(X), r = R2(X), X = εx, −∞ < x < ∞, 0 6 θ < 2π,

where ε is a small parameter, and R1,2 is by assumption only dependent on ε through
εx. As we will see ε is absent from the final results, but its rôle is necessary to
legitimize and support the present systematic perturbation method. The fluid in the
duct is described by (see, for example, Pierce 1981)

ρ̃t + ∇ · (ρ̃ṽ) = 0, (2.1a)

ρ̃(ṽt + ṽ · ∇ṽ) + ∇p̃ = 0, (2.1b)

γp̃ = ρ̃γ, c̃2 =
dp̃

dρ̃
= ρ̃γ−1 (2.1c,d )

(with boundary and initial conditions), where ṽ is particle velocity, ρ̃ is density, p̃
is pressure, c̃ is sound speed (all dimensionless). Since we assumed the flow to be
irrotational, we may introduce a velocity potential φ̃, such that ṽ = ∇φ̃. Using the
vector identity (ṽ · ∇)ṽ = 1

2
∇|ṽ|2 + (∇ × ṽ) × ṽ = 1

2
∇|ṽ|2, and the relation between p̃

and ρ̃, the above momentum equation may be integrated to a variant of Bernoulli’s
equation

∂φ̃

∂t
+ 1

2
|ṽ|2 +

c2

γ − 1
= a constant. (2.2)

This flow is split up into a stationary (mean) flow part, and an acoustic perturbation.
This acoustic part varies harmonically in time with circular frequency ω, and with
small amplitude to allow linearization. To avoid a complicating coupling between the



282 S. W. Rienstra

two small parameters (ε and the acoustic amplitude), we assume this acoustic part
much smaller than any relevant power of ε. In the usual complex notation (where the
real part is assumed) we write then

ṽ = V + veiωt, φ̃ = Φ+ φeiωt, ρ̃ = D + ρeiωt, p̃ = P + peiωt, c̃ = C + ceiωt.

Substitution and linearization yields

the mean flow field
∇ · (DV ) = 0, (2.3a)

1
2
|V |2 +

C2

γ − 1
= E (a constant), (2.3b)

C2 = γP/D = Dγ−1; (2.3c)

the acoustic field
iωρ+ ∇ · (D∇φ+ ρV ) = 0, (2.4a)

iωφ+ V · ∇φ+
p

D
= 0, (2.4b)

p = C2ρ, c = 1
2
(γ − 1)D−(γ+1)/2p. (2.4c,d )

The integration constant in the integrated momentum equation may be absorbed by
φ. For the mean flow the duct wall is solid, so the normal velocity vanishes

V · ni = 0 at r = Ri(X) (i = 1, 2), (2.5)

where the outward-directed normal vectors at the wall are given by

n1 = − er − εR′1ex
(1 + ε2R′21 )1/2

, n2 =
er − εR′2ex

(1 + ε2R′22 )1/2
.

To define the mean flow an axial mass flux πF will be assumed such that the flow
is subsonic everywhere. For the acoustic part the duct walls are locally reacting
impedance walls with complex impedances Z1 = Z1(X) and Z2 = Z2(X) – slow
variations of Zi in X may be included – meaning that at the wall, at a hypothetical
point with zero mean flow,

p = Zi(v · ni).
However, this is not the boundary condition needed here. Since we deal with a fluid
of vanishing viscosity, the boundary layer along the wall in which the mean flow
tends to zero is of vanishing thickness, and we cannot apply a boundary condition at
the wall. The required condition is for a point near the wall but still (just) inside the
mean flow. For arbitrary mean flow along a (smoothly) curved wall it was given by
Myers (1980, equation 15):

iω(v · ni) = [iω + V · ∇− ni · (ni · ∇V )]

(
p

Zi

)
at r = Ri(X) (i = 1, 2) (2.6)

while

p = 0 if Zi = 0.

Although included in the general formulation as a limiting case, it is easier to consider
the solution for Z = 0 separately. For simplicity we will here only consider Zi ≡ 0 as
a special case.

The above equations and boundary conditions are evidently still insufficient to
define a unique solution, and we need additional conditions for mean flow and sound
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field. This will be done by assuming a certain behaviour. Since we are studying axial
variations due to the geometry of the pipe, the natural choice is to consider a mean
flow, almost uniform with axial variations only in X, and a sound field consisting of a
constant-duct mode perturbed by the X-variations. Furthermore, this choice implies
the absence of vorticity (apart from the vortex sheet along the wall), allowing the
introduction of a velocity potential.

Before turning to the acoustic problem, we will derive in the next section the
solution of the mean flow problem as a series expansion in ε. As noted before,
a consistent mean flow expansion is necessary to obtain the explicit multiple-scale
solution of the acoustic problem.

3. Mean flow
Since we assumed a mean flow, nearly uniform with axial variations in X only, we

have

V = U(X, r; ε)ex + V (X, r; ε)er.

The cross-sectional mass flux is given by

2π

∫ R2(X)

R1(X)

D(X, r; ε)U(X, r; ε)r dr = πF, a constant. (3.1)

Since the variations in x are through X only, we may assume the constants E and F
to be independent of ε. Furthermore, by writing out the same mass equation (2.3a)
in X and r, it follows that the small axial mass variations can only be balanced by
small radial variations, so V = O(ε), and hence

U(X, r; ε) = U0(X) + O(ε2), V (X, r; ε) = εV1(X, r) + O(ε3),

and so, with equations (2.3b) and (2.3c),

P (X, r; ε) = P0(X) + O(ε2), D(X, r; ε) = D0(X) + O(ε2), C(X, r; ε) = C0(X) + O(ε2).

From equation (3.1) it follows now immediately that

U0(X) =
F

D0(X)(R2
2(X)− R2

1(X))
(3.2)

with D0, P0 and C0 given by

1

2

(
F

D0(R
2
2 − R2

1)

)2

+
1

γ − 1
D
γ−1
0 = E, P0 =

1

γ
D
γ
0, C0 = D

(γ−1)/2
0 , (3.3a–c)

where D0 is to be determined numerically, per X. For V1, we return to the continuity
equation, which is to leading order

∂

∂X
(D0U0) +

1

r

∂

∂r
(rD0V1) = 0.

Under the boundary conditions

−dRi
dX

U0 + V1 = 0 at r = Ri(X) (i = 1, 2)

(one of which is already satisfied through the application of (3.1) leading to (3.2)), we
obtain the solution

V1(X, r) = − F

2rD0(X)

∂

∂X

(
r2 − R2

1(X)

R2
2(X)− R2

1(X)

)
. (3.4)
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The above solutions U0, P0, D0 may be recognized as the well-known one-dimensional
gas flow equations (e.g. Liepmann & Pluckett 1947). It should be stressed, however,
that the radial velocity component V1 is essential for a consistent mean flow descrip-
tion, and therefore necessary here.

4. The acoustic field
In this section we will derive the main result of the present paper: the explicit

multiple-scales solution for a mode-like wave described by equations (2.4a–d) with
(2.6). When we eliminate p and ρ we have the following differential equation and
boundary conditions for φ:

∇ · (D∇φ)− D (iω + V · ∇)

[
1

C2
(iω + V · ∇)φ

]
= 0, (4.1a)

iω(∇φ · ni) = − (iω + V · ∇− ni · (ni · ∇V ))

[
D

Zi
(iω + V · ∇)φ

]
at r = Ri(X), (4.1b)

and

(iω + V · ∇)φ = 0 at r = Ri if Zi = 0.

A straight-duct modal wave form would be a function of r multiplied by a complex
exponential in θ and x. The mode-like wave we are looking for here is obtained by
assuming the amplitude and axial and radial wave numbers to be slowly varying, i.e.
depending on X (Nayfeh & Telionis 1973). So we assume

φ(x, r, θ; ε) = A(X, r; ε) exp

(
−imθ − iε−1

∫ X

µ(ξ) dξ

)
. (4.2)

Then the partial derivatives with respect to x become formally (suppressing the
exponential)

∂

∂x
= −iµ(X) + ε

∂

∂X
,

∂2

∂x2
= −µ(X)2 − iε

dµ

dX
− 2iεµ(X)

∂

∂X
+ ε2

∂2

∂X2
.

Substitution in (4.1a), and collecting like powers of ε yield up to order ε2

D0L(A) =
iε

A

{
∂

∂X

[(
U0Ω

C2
0

+ µ

)
D0A

2

]
+

1

r

∂

∂r

[
r
V1Ω

C2
0

D0A
2

]}
, (4.3)

where

Ω = ω − µU0,

and the operator L is defined by

L =
∂2

∂r2
+

1

r

∂

∂r
+
Ω2

C2
0

− µ2 − m2

r2
.

With ni · (ni · ∇V ) = ε(∂/∂r)V1 +O(ε2), the boundary conditions (4.1b), up to order ε2,
are now

iω
∂A

∂r
+
Ω2D0A

Z1

= εωµ
dR1

dX
A+

iε

A

[
U0

∂

∂X
+V1

∂

∂r
− ∂V1

∂r

](
ΩD0A

2

Z1

)
(r=R1), (4.4a)
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iω
∂A

∂r
− Ω

2D0A

Z2

= εωµ
dR2

dX
A− iε

A

[
U0

∂

∂X
+V1

∂

∂r
− ∂V1

∂r

](
ΩD0A

2

Z2

)
(r=R2), (4.4b)

and [
iΩ + ε

(
U0

∂

∂X
+ V1

∂

∂r

)]
A = 0 at r = Ri if Zi = 0.

Now assume

A(X, r; ε) = A0(X, r) + εA1(X, r) + . . . ,

then substitution into equation (4.3) yields for the O(1) and O(ε) terms

L(A0) = 0, (4.5a)

D0L(A1) =
i

A0

{
∂

∂X

[(
U0Ω

C2
0

+ µ

)
D0A

2
0

]
+

1

r

∂

∂r

[
r
V1Ω

C2
0

D0A
2
0

]}
(4.5b)

with boundary conditions

iω
∂A0

∂r
± Ω2D0A0

Z1,2

= 0, (r = R1,2) (4.6a)

iω
∂A1

∂r
± Ω2D0A1

Z1,2

= ωµ
dR1,2

dX
A0 . . .

± i

A0

[
U0

∂

∂X
+ V1

∂

∂r
− ∂V1

∂r

](
ΩD0A

2
0

Z1,2

)
, (r = R1,2) (4.6b)

The leading-order equation (4.5a) is, up to a radial coordinate stretching, Bessel’s
equation in r, with X acting only as a parameter. The mode-like solution we are
looking for is then

A0(X, r) = N(X)Jm(α(X)r) +M(X)Ym(α(X)r), (4.7)

where Jm and Ym are the mth-order Bessel function of the first and second kind
(Watson 1966). The corresponding boundary conditions (4.6a) produce the following
equation for ‘eigenvalue’ α (continuous in X):

αR2J
′
m(αR2)− ζ2Jm(αR2)

αR2Y ′m(αR2)− ζ2Ym(αR2)
=
αR1J

′
m(αR1) + ζ1Jm(αR1)

αR1Y ′m(αR1) + ζ1Ym(αR1)
= −M(X)

N(X)
, (4.8)

where

ζ1 =
Ω2D0R1

iωZ1

, ζ2 =
Ω2D0R2

iωZ2

.

If Zi ≡ 0 we have the hydrodynamic mode given by Ω = 0, and the acoustic modes
given by

Jm(αR2)

Ym(αR2)
=
Jm(αR1)

Ym(αR1)
= −M(X)

N(X)
.

Expression (4.8) itself is equal to −M(X)/N(X), so only N is to be determined; α and
µ are related by the dispersion relation

α2 + µ2 = Ω2/C2
0 .

It is convenient to introduce the reduced axial wavenumber

σ =

(
1− (C2

0 −U2
0 )
α2

ω2

)1/2
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which is µ scaled by ω and without the pure convection effects, so that

µ = ω
C0σ −U0

C2
0 −U2

0

,
U0Ω

C2
0

+µ =
ωσ

C0

, Ω = ωC0

C0 −U0σ

C2
0 −U2

0

, and (C2
0 −U2

0 )
α2

ω2
+σ2 = 1.

The branch (i.e. sign) of σ is to be selected such that Im(σ) 6 0, Re(σ) > 0 (quadrant
IV) if the mode is propagating in the positive direction, and Im(σ) > 0, Re(σ) 6 0
(quadrant II) if the mode is propagating in the negative direction. A single exception
is to be made if impedance, frequency, and mean flow are such that the vortex
sheet between the mean flow and impedance wall becomes (Helmholtz) unstable,
corresponding to a σ in either quadrant I or III (Rienstra 1986; Tester 1973b; Koch
& Möhring 1983; and others). This includes the border case of the hydrodynamic
mode Ω = 0 if Zi ≡ 0. Although in principle included in the present results, we will
not consider these cases here in detail.

Note that in the cylindrical duct case, with R1 = 0, we have just M(X) = 0 so that

A0(X, r) = N(X)Jm(α(X)r),

and α is determined from

αR2J
′
m(αR2)− ζ2Jm(αR2) = 0. (4.9)

The amplitude functions N(X) and M(X) are determined from the condition that
there exists a solution A1. This is not trivial since we assumed the solution to behave
in a certain way, namely to depend on X rather than x. Now suppose that we proceed
and solve the equation for A1, and subsequently find the necessary forms of N and
M, then it would appear that we end up with similarly undetermined functions in
A1. So this approach looks rather inefficient. Indeed, it is not necessary to work out
the equations for A1 in detail. We only need a solvability condition (Nayfeh 1981),
sufficient to yield the required equation for N.

Since the operator rL is self-adjoint in r, we have∫ R2

R1

A0L(A1)r dr = R2

[
A0

∂A1

∂r
− A1

∂A0

∂r

]
r=R2

− R1

[
A0

∂A1

∂r
− A1

∂A0

∂r

]
r=R1

.

Further evaluation of this expression (using 4.6b) and the corresponding right-hand
side of (4.5b) gives finally, after some calculation, the following equation:

d

dX

[
D0

ωσ

C0

∫ R2

R1

A2
0(X, r)r dr +

D0U0

Ω

(
ζ2A

2
0(X,R2) + ζ1A

2
0(X,R1)

)]
= 0. (4.10)

Use is made of equations (3.2) and (3.4), and the identities∫ R(X) ∂

∂X
f(X, r) dr =

d

dX

∫ R(X)

f(X, r) dr − dR

dX
f(X,R)

and

U0

∂

∂X
+ V1

∂

∂r
= U0

d

dX
along r = R(X).

The above equation (4.10) can be integrated immediately, with a constant of integra-
tion Q2

0. This constant is determined by the initial amplitude of the mode entering
the duct. Since the solution is linear, it is irrelevant here. The integral of A2

0r, finally
to be evaluated, is a well-known integral of Bessel functions (see the Appendix), with
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the result (using (4.8))∫ R2

R1

A2
0(X, r)r dr = 1

2
R2

2

(
1− m2 − ζ2

2

α2R2
2

)
A2

0(X,R2)− 1
2
R2

1

(
1− m2 − ζ2

1

α2R2
1

)
A2

0(X,R1).

Using the relations

A0(X,R1) =
(2/π)N(X)

αR1Y ′m(αR1) + ζ1Ym(αR1)
, A0(X,R2) =

(2/π)N(X)

αR2Y ′m(αR2)− ζ2Ym(αR2)

and some further simplifications we thus obtain the following expression for N(X)
(the principal result of the present paper):

(
1
2
πQ0

N

)2

=

D0ωσR
2
2

2C0

(
1− m2 − ζ2

2

α2R2
2

)
+
D0U0

Ω
ζ2(

αR2Y ′m(αR2)− ζ2Ym(αR2)
)2

−
D0ωσR

2
1

2C0

(
1− m2 − ζ2

1

α2R2
1

)
− D0U0

Ω
ζ1(

αR1Y ′m(αR1) + ζ1Ym(αR1)
)2

.

(4.11)

An interesting special case is the hard-walled duct, where Zi = ∞, ζi = 0. Then we
have a real α and(

1
2
πQ0

N

)2

=
D0ωσ

2C0

(
R2

2 − m2/α2

[αR2Y ′m(αR2)]2
− R2

1 − m2/α2

[αR1Y ′m(αR1)]2

)
(4.12)

which is for the plane wave mode m = 0, α = 0, σ = 1, given by(
Q0

N

)2

=
D0ω

2C0

(R2
2 − R2

1),

while M(X) = 0. Another special case is Zi = 0. It is included in the present formulas
as the limit ζi → ∞, but probably easier is to repeat the analysis with Zi = 0 right
from the start. We obtain then(

1
2
πQ0

N

)2

=
D0ωσ

2C0

(
1

Ym(αR2)2
− 1

Ym(αR1)2

)
. (4.13)

For a hollow cylinder, without an inner wall, the above general result (4.11) reduces,
in the limit R1 → 0, to(

Q0

N

)2

=

(
D0ωσR

2
2

2C0

(
1− m2 − ζ2

2

α2R2
2

)
+
D0U0

Ω
ζ2

)
Jm(αR2)

2. (4.14)

So the present solution is equally valid for hollow and annular cylindrical ducts, and
hence includes the unique feature that it provides (apparently for the first time) a
systematic approximation to the hollow-to-annular cylinder transition problem in the
turbofan engine duct inlet. This aspect will be illustrated in the next section by an
example.

If convenient, we may observe that for a hard-walled hollow cylinder the combi-
nation αR2 is a constant, independent of X, so we can absorb some constant factors
into Q0 to obtain (

Q0

N

)2

=
D0ωσR

2
2

C0

. (4.15)

Of course, with a transition from a hollow to annular cylinder this is not advisable,
because then it is required that we deal with the same Q0.
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Figure 2. Sketch of geometry: engine inlet with spinner.

5. Example

In this section we will discuss an example of the previous theory. As noted above,
in the results obtained the small parameter ε is not explicitly present anymore,
so for convenience we will now return from the slow variable X to the physical
(dimensionless) variable x.

A lined inlet duct of a CFM56-inspired turbofan engine, from inlet plane via
(hard-walled) spinner to the inlet rotor plane, is given by (see figure 2)

R2(x) = 1.073− 0.198(1− x/2)2 + 0.109 exp(−11x/2),

R1(x) = max(0, 0.689− [0.055 + 1.131(1− x/2)2
]1/2

), 0 6 x 6 2.

The inlet plane is at about x = 0, the plane of narrowest duct diameter R2 = 0.949
is at x = 0.223, the plane where R2 = 1 is at x = 0.773 (the reference radius R∞),
the spinner top is at x = 0.782, and the fan plane is at x = 2, where R2 = 1.073 and
R1 = 0.454. The impedances used are Z2 = 2 − i and Z1 = ∞. The ratio of specific
heats is γ = 1.4202. Assuming the dimensionless density D = 1 far upstream, its value
slightly below 1 at the inlet plane, and the inlet Mach number ∼ 0.6, we choose
F = 0.559 and E = 2.514. Density and Mach number are given in figure 3. A rotor
blade number of 26, and a rotor tip Mach number slightly below 1 are taken, such
that we would have (with a clean in-flow) rotor-alone noise of frequency ω = 25 and
m = 26, which is near cut-off. Just for the example we include a well cut-on second
harmonic of ω = 50 and m = 26, the origin of which is for the moment unimportant.
The first radial left-running mode is considered, together (for comparison) with its
right-running companion.

We start with ω = 25. In figure 4(a–c) the radial wavenumber α, the axial wave-
number µ, and the reduced axial wavenumber σ are shown in the complex plane,
parametrically varying with the duct position x. Initial positions are indicated by
an open circle, intermediate positions by filled small circles. To be sure that we are
looking at the same left- and right-running mode, both are found first, at the initial
position x = 0, for no-flow conditions (F = 0), when both modes coincide. Then the
modes are traced for increasing F . This can be seen in figure 4(a), the plot for α: the
thin dotted line is α at x = 0 for increasing F .
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Figure 3. Dimensionless mean flow density and Mach number.

The cross-sectionally averaged amplitude functions A, given by

Ā(X) =

[∫ R2

R1

|A(X, r)|2r dr

]1/2

,

are plotted in figure 5. The respective values are normalized to 1 at the beginning
and end positions. Since it is of interest to measure the amount of dissipated acoustic
energy, we introduce here the acoustic power P of a single mode through a duct
cross-section. Following Goldstein (1976), we define the acoustic power at a surface S

P =

∫
S

I · nS ds,

where I is the time-averaged acoustic intensity or energy flux, here given by

I = 1
2

Re[(p/D + ∇Φ · ∇φ)(D∇φ+ ρ∇Φ)∗],

with ∗ denoting the complex conjugate. Considering here for S a duct cross-section,
we need the axial component of I , which is to leading order

Ix =
D0ω

2

2C0

Re(σ)|φ|2 =
D0ω

2

2C0

Re(σ)|A0|2 exp

(
2

∫ x

Im µ(εξ) dξ

)
, (5.1)

so that

P = 2π
D0ω

2

2C0

Re(σ)

∫ R2

R1

|A0(X, r)|2r dr exp

(
2

∫ x

Im µ(εξ) dξ

)
, (5.2)

where (see the Appendix)∫ R2

R1

|A0(X, r)|2r dr = −|A0(X,R2)|2 Im(ζ2) + |A0(X,R1)|2 Im(ζ1)

Im(α2)
,

which is, of course, equivalent to (Ā)2. For hard-walled ducts (Zi = ∞, ζi = 0) all
eigenvalues α are real. Then P = 0 for cut-off modes (Re(σ) = 0). For cut-on modes,
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Figure 4. Complex-valued (a) radial wavenumber αm1, (b) axial wavenumber µm1 and
(c) reduced wavenumber σm1 (ω = 25).

where σ is real, A0 is also real and∫ R2

R1

A0(X, r)
2r dr =

Q2
0C0

D0ωσ
.

Since the value of P is highly dominated by the exponential part exp(2
∫

Im(µ) dξ), we
have plotted the power both without (figure 6(a), linear scale) and with this exponent
(figure 6(b), dB scale). Since for the majority of axial positions the left-running mode
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Figure 5. Averaged amplitude Ā (ω = 25).
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Figure 6. Power (a) without exp-term (linear scale), (b) dB scale (ω = 25).

was well cut-off, while the right-running one was not (figure 4b,c), the left-running
mode is altogether very much more damped.

The acoustic pressure distribution inside the duct is displayed in figure 7. Iso-
pressure contours are plotted of the field of the left-running mode. The pressure
amplitude

|p(x, r)| =
∣∣∣∣−iD0ΩA0 exp

(
−i

∫ x

µ(εξ) dξ

)∣∣∣∣
is scaled such that the maximum is equal to 1. The plotted contour levels are in equal
steps of 1

10
between 0.1 and 1, supplemented with steps increasing in proportions of
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Figure 7. Iso-pressure contours (ω = 25).

10 between 10−6 and 10−2 to reveal the lowest levels. The strong decay of this cut-off
mode is very prominent.

For the well cut-on second harmonic ω = 50 we have a similar sequence, but
the effects are clearly less pronounced, as shown in figures 8–11. In spite of the
considerable geometry variation, the averaged amplitude Ā is practically constant.
Also, the power is now only dependent on its exponential part, i.e. the imaginary part
of µ. This, in its turn, is only dependent on convection effects, as we can see from the
nearly stationary reduced wavenumber σ. The upstream mode is now less damped
than its downstream companion.

The iso-pressure contours of the left-running mode, plotted in figure 11, show some
interesting features. The high-frequency wave fronts propagate almost parallel, like
rays. The interaction with the liner is small, resulting in little damping, such that the
iso-pressure lines are nearly parallel to the wall. The rm-behaviour near the axis r = 0
creates in front of the spinner an area of very low sound pressure levels, leaving the
spinner acoustically unimportant. Of course, the effect of the spinner is felt indirectly,
via the mean flow. There is, for example, the local intensification of the field in the
duct throat where the mean velocity is largest (x ' 0.2, r ' 0.9).

6. Discussion and conclusions
If the multiple-scales solution is valid, the mode-like wave behaves locally like a

mode of a straight duct. Rotating with angular velocity ω/m, it propagates in the axial
direction with or without attenuation (unattenuated or cut on: Im(µ) = 0; attenuated
or cut off: Im(µ) 6= 0). The more interesting aspects here, are, of course, connected
to the slow variations in X. These are mainly represented by the amplitude functions
N,M and the phase function µ. When R1,2 and Z1,2 vary with X, the mode changes
gradually, except at the points where the denominator of N (4.11) vanishes and the
approximation breaks down. These points are just found at the double eigenvalues,
i.e. where two eigenvalues µ (or α) coalesce. These are given by equation (4.8) and its
partial derivative with respect to µ.

Clearly, the approximation breaks down because the two coalescing modes couple
(the energy of the incident mode is distributed over the two) in a short region. A local
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(c) reduced wavenumber σm1, (ω = 50).

analysis, similar to what may be found in Nayfeh & Telionis (1973) for the no-flow
hard-walled problem, is necessary to determine the resulting amplitudes.

In general the two modes propagate in the same direction but not necessarily. The
second mode may run backwards while at the same time the incident mode becomes
cut off in such a way that beyond that point no energy is propagated. Points with this
behaviour are usually called turning points, since the incident mode is totally reflected
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into the backward-running mode (we assume, of course, the absence of tunnelling by
other interfering turning points).

Turning points occur in practice with hard-walled ducts (Z = ∞), where a real σ
tends to zero to become pure imaginary (α is always real). At σ = 0, N is singular
(4.12), (4.15), and the incident mode couples to a backwards-running mode. For real
σ we have P ∼ Re(σ) 6= 0,

whereas for pure imaginary σ P = 0,

so the mode must indeed reflect. Note that this behaviour is irrespective of the
presence of mean flow.
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Figure 11. Iso-pressure contours (ω = 50).

In conclusion, we have found an explicit solution for the multiple-scale problem of
modal sound propagation through slowly varying lined ducts with isentropic mean
flow. It is shown that a consistent approximation of the boundary condition and
mean flow allows the multiple-scales problem to have an exact solution.

Since the calculational complexities are no greater than for the classical straight
duct model, the present solution provides an attractive alternative to a full numerical
solution if diameter variation is relevant. The present solution is equally valid for
hollow and annular cylindrical ducts, and hence includes the unique feature that
it provides a systematic approximation to the hollow-to-annular cylinder transi-
tion problem in the turbofan engine duct inlet. This aspect is elaborated by an
example.

The solution remains equally valid for hard-walled or no-flow ducts, but needs
adaptation for a completely soft wall with Z = 0. The approximation breaks down
at double eigenvalues when the mode couples with other modes. This occurs for
example at cut-off points in a hard-walled duct.

We appreciate the useful remarks and interest of Johan B. H. M. Schulten (NLR),
including his help in obtaining the necessary engine data.

Appendix.
Well-known integrals of Bessel functions (Watson 1966, p. 135) are∫

xCm(αx)C̃m(βx) dx =
x

α2 − β2
{βCm(αx)C̃′m(βx)− αC′m(αx)C̃m(βx)},∫

xCm(αx)C̃m(αx) dx = 1
2
(x2 − m2/α2)Cm(αx)C̃m(αx) + 1

2
x2C′m(αx)C̃′m(αx),

where Cm and C̃m are any linear combination of Jm and Ym.
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